## Exercise 28

Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 x}}{x^{3}}
$$

## Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+4 y_{c}^{\prime}+4 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+4\left(r e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4 r+4=0
$$

Solve for $r$.

$$
\begin{gathered}
(r+2)^{2}=0 \\
r=\{-2\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and $x e^{-2 x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} x e^{-2 x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+4 y_{p}^{\prime}+4 y_{p}=\frac{e^{-2 x}}{x^{3}} \tag{2}
\end{equation*}
$$

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{-2 x}+C_{2}(x) x e^{-2 x}
$$

Differentiate it with respect to $x$.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{-2 x}+C_{2}^{\prime}(x) x e^{-2 x}-2 C_{1}(x) e^{-2 x}-C_{2}(x)(2 x-1) e^{-2 x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{-2 x}+C_{2}^{\prime}(x) x e^{-2 x}=0, \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=-2 C_{1}(x) e^{-2 x}-C_{2}(x)(2 x-1) e^{-2 x}
$$

Differentiate it with respect to $x$ once more.

$$
y_{p}^{\prime \prime}=-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x)(2 x-1) e^{-2 x}+4 C_{1}(x) e^{-2 x}+4 C_{2}(x)(x-1) e^{-2 x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& {\left[-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x)(2 x-1) e^{-2 x}+\underline{4 C_{1}(x) e^{-2 x}}+\overline{\left.4 C_{2}(x)(x-1) e^{-2 x}\right]}\right.} \\
& \quad+4\left[-2 C_{1}(x) e^{-2 x}-\overline{\left.C_{2}(x)(2 x-1) e^{-2 x}\right]}\right. \\
& +4\left[C_{1}(x) e^{-2 x}+\overline{\left.C_{2}(x) x e^{-2 x}\right]}=\frac{e^{-2 x}}{x^{3}}\right.
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x)(2 x-1) e^{-2 x}=\frac{e^{-2 x}}{x^{3}} \tag{4}
\end{equation*}
$$

Multiply both sides of equation (3) by 2 , and multiply both sides of equation (4) by 1 .

$$
\begin{aligned}
2 C_{1}^{\prime}(x) e^{-2 x}+2 C_{2}^{\prime}(x) x e^{-2 x} & =0 \\
-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x)(2 x-1) e^{-2 x} & =\frac{e^{-2 x}}{x^{3}}
\end{aligned}
$$

Add the respective sides of these equations to eliminate $C_{1}^{\prime}(x)$.

$$
C_{2}^{\prime}(x) e^{-2 x}=\frac{e^{-2 x}}{x^{3}}
$$

Solve for $C_{2}^{\prime}(x)$.

$$
C_{2}^{\prime}(x)=\frac{1}{x^{3}}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
C_{2}(x)=-\frac{1}{2 x^{2}}
$$

Solve equation (3) for $C_{1}^{\prime}(x)$.

$$
\begin{aligned}
C_{1}^{\prime}(x) & =-C_{2}^{\prime}(x) x \\
& =-\left(\frac{1}{x^{3}}\right) x \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
C_{1}(x)=\frac{1}{x}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{-2 x}+C_{2}(x) x e^{-2 x} \\
& =\left(\frac{1}{x}\right) e^{-2 x}+\left(-\frac{1}{2 x^{2}}\right) x e^{-2 x} \\
& =\frac{e^{-2 x}}{2 x}
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} x e^{-2 x}+\frac{e^{-2 x}}{2 x},
\end{aligned}
$$

where $C_{1}$ and $C_{2}$ are arbitrary constants.

